Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
The cobalt-catalyzed asymmetric hydrogenation of dehydro-sitagliptin was studied and applied to the synthesis of sitagliptin (Januvia®). Catalyst discovery efforts were accelerated by the application of a general method for the synthesis of cationic bis(phosphine) cobalt η6-arene complexes. One-electron oxidation of bis(phosphine) cobalt(II) dialkyl complexes in the presence of arenes furnished the corre-sponding, bench stable cobalt precatalysts, [(P-P)Co(η6-C6H6)][BArF4]. Asymmetric hydrogenation utilized 0.5 mol% of the optimal catalyst, [(R,R)-(iPrDuPhos)Co(η6-C6H6)][BArF4] in THF solution and produced sitagliptin in >99% yield with 97% ee. Cobalt catalysts were compatible with a range of solvents and maintained excellent activity and selectivity after standing in air in the solid state for two weeks. Deuterium labeling studies support an enamine-imine tautomerization process resulting in reduction of the metalated imine. Notably, state-of-the-art neutral bis(phosphine) cobalt precatalysts were ineffective, emphasizing the utility of a class of cationic cobalt precatalyst.more » « less
-
Abstract Intermediates relevant to cobalt‐catalyzed alkene hydroformylation have been isolated and evaluated in fundamental organometallic transformations relevant to aldehyde formation. The 18‐electron (R,R)‐(iPrDuPhos)Co(CO)2H has been structurally characterized, and it promotes exclusive hydrogenation of styrene in the presence of 50 bar of H2/CO gas (1:1) at 100 °C. Deuterium‐labeling studies established reversible 2,1‐insertion of styrene into the Co−D bond of (R,R)‐(iPrDuPhos)Co(CO)2D. Whereas rapid β‐hydrogen elimination from cobalt alkyls occurred under an N2atmosphere, alkylation of (R,R)‐(iPrDuPhos)Co(CO)2Cl in the presence of CO enabled the interception of (R,R)‐(iPrDuPhos)Co(CO)2C(O)CH2CH2Ph, which upon hydrogenolysis under 4 atm H2produced the corresponding aldehyde and cobalt hydride, demonstrating the feasibility of elementary steps in hydroformylation. Both the hydride and chloride derivatives, (X=H−, Cl−), underwent exchange with free13CO. Under reduced pressure, (R,R)‐(iPrDuPhos)Co(CO)2Cl underwent CO dissociation to form (R,R)‐(iPrDuPhos)Co(CO)Cl.more » « less
An official website of the United States government
